Enumeration of Maximal Planar Graphs with minimum degree Five

نویسندگان

  • Gunnar Brinkmann
  • Philippe Rolland
چکیده

In this paper, we give a process to enumerate all maximal planar graphs with minimum degree ve, with a xed number of vertices. These graphs are called MPG5 [6]. We have used the algorithm [3] to generate these graphs. For the MPG5 enumeration we have used the general method due to Brenda McKay in [5]; i.e. by computing the orbits set of automorphism group and canonical forms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Four Coloring for a Subset of Maximal Planar Graphs with Minimum Degree Five

In this paper, we present some results on maximal planar graphs with minimum degree ve, denoted by MPG5 graphs [6]. We consider a subset of MPG5 graphs, called the Z graphs, for which all vertices of degree superior to ve are not adjacent. We give a vertex four coloring for every Z graph.

متن کامل

Minimum Maximal Matching Is NP-Hard in Regular Bipartite Graphs

Yannakakis and Gavril showed in [10] that the problem of finding a maximal matching of minimum size (MMM for short), also called Minimum Edge Dominating Set, is NP-hard in bipartite graphs of maximum degree 3 or planar graphs of maximum degree 3. Horton and Kilakos extended this result to planar bipartite graphs and planar cubic graphs [6]. Here, we extend the result of Yannakakis and Gavril in...

متن کامل

On the M-polynomial of planar chemical graphs

Let $G$ be a graph and let $m_{i,j}(G)$, $i,jge 1$, be the number of edges $uv$ of $G$ such that ${d_v(G), d_u(G)} = {i,j}$. The $M$-polynomial of $G$ is $M(G;x,y) = sum_{ile j} m_{i,j}(G)x^iy^j$. With $M(G;x,y)$ in hands, numerous degree-based topological indices of $G$ can be routinely computed. In this note a formula for the $M$-polynomial of planar (chemical) graphs which have only vertices...

متن کامل

Repetition Number of Graphs

Every n-vertex graph has two vertices with the same degree (if n ≥ 2). In general, let rep(G) be the maximum multiplicity of a vertex degree in G. An easy counting argument yields rep(G) ≥ n/(2d − 2s + 1), where d is the average degree and s is the minimum degree of G. Equality can hold when 2d is an integer, and the bound is approximately sharp in general, even when G is restricted to be a tre...

متن کامل

A CHARACTERIZATION FOR METRIC TWO-DIMENSIONAL GRAPHS AND THEIR ENUMERATION

‎The textit{metric dimension} of a connected graph $G$ is the minimum number of vertices in a subset $B$ of $G$ such that all other vertices are uniquely determined by their distances to the vertices in $B$‎. ‎In this case‎, ‎$B$ is called a textit{metric basis} for $G$‎. ‎The textit{basic distance} of a metric two dimensional graph $G$ is the distance between the elements of $B$‎. ‎Givi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997